Exámenes de Selectividad

Matemáticas II. Cataluña 2018, Convocatoria extraordinaria

mentoor.es

Sèrie 3

Ejercicio 1. Análisis

Considere la función polinómica $f(x) = x^3 - ax^2 + bx + c$.

- a) Calcule los valores de los parámetros a, b y c, sabiendo que la función tiene un extrem relativo en el punto de abscisa x = 1 y que la recta tangente a la gráfica de la función en el punto de abscisa x = 0 es la recta y = x + 3.
- b) Para los valores $a=2,b=1\,$ y $c=3,\,$ calcule las abscisas de los extremos relativos de la función y clasifiquelos.

Solución:

a) Calcule los valores de los parámetros a, b y c, sabiendo que la función tiene un extrem relativo en el punto de abscisa x=1 y que la recta tangente a la gráfica de la función en el punto de abscisa x=0 es la recta y=x+3.

Las condiciones del enunciado nos dan un sistema de tres ecuaciones.

La derivada de la función es $f'(x) = 3x^2 - 2ax + b$.

1. Extremo relativo en x=1: f'(1)=0.

$$3(1)^2 - 2a(1) + b = 0 \implies 3 - 2a + b = 0.$$

- 2. Recta tangente en x=0 es y=x+3:
 - La pendiente de la tangente es 1, por tanto f'(0) = 1.

$$3(0)^2 - 2a(0) + b = 1 \implies b = 1.$$

– El punto de tangencia está en la curva, por tanto f(0) = y(0).

$$f(0) = 0 - 0 + 0 + c = c$$
. $y(0) = 0 + 3 = 3$. $\implies c = 3$.

Sustituyendo b=1 en la primera ecuación: $3-2a+1=0 \implies 4-2a=0 \implies a=2$.

Los valores son
$$a = 2, b = 1, c = 3$$
.

b) Para los valores $a=2,b=1\,$ y $c=3,\,$ calcule las abscisas de los extremos relativos de la función y clasifiquelos.

La función es $f(x) = x^3 - 2x^2 + x + 3$. Su derivada es $f'(x) = 3x^2 - 4x + 1$.

$$f'(x) = 0 \implies 3x^2 - 4x + 1 = 0 \implies x = \frac{4 \pm \sqrt{16 - 12}}{6} = \frac{4 \pm 2}{6}.$$

Las abscisas de los extremos son $x_1 = 1$ y $x_2 = 1/3$.

Para clasificarlos, usamos la segunda derivada: f''(x) = 6x - 4.

- $-f''(1) = 6(1) 4 = 2 > 0 \implies$ Mínimo relativo en x = 1.
- $-f''(1/3) = 6(1/3) 4 = 2 4 = -2 < 0 \implies \text{Máximo relativo en } x = 1/3.$

Hay un máximo relativo en x = 1/3 y un mínimo relativo en x = 1.

Ejercicio 2. Álgebra

Considere el sistema de ecuaciones lineales siguiente, que depende del parámetro real a:

$$\begin{cases} x+y+z=3\\ x+y-z=1\\ 2x+ay=2a \end{cases}$$

- a) Discuta el sistema para los diferentes valores del parámetro a.
- b) Resuelva el sistema para el caso a = 1.

Solución:

a) Discuta el sistema para los diferentes valores del parámetro a.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & a & 0 \end{pmatrix}.$$

$$|A| = a - 2 - (2a - 2) = -a.$$

$$|A| = 0 \iff a = 0.$$

Caso 1:
$$a \neq 0 \implies |A| \neq 0 \implies \operatorname{Rg}(A) = 3$$
. S.C.D.

Caso 2:
$$a = 0$$
. Rg(A) = 2. Rg(A*) = 2. S.C.I.

Si
$$a \neq 0 \implies \text{S.C.D.}$$

Si $a = 0 \implies \text{S.C.I.}$

b) Resuelva el sistema para el caso a = 1.

Para
$$a = 1$$
, es S.C.D. $|A| = -1$.

Sumando las dos primeras ecuaciones:
$$2x + 2y = 4 \implies x + y = 2$$
.

De la tercera ecuación: 2x + y = 2.

Restando estas dos nuevas ecuaciones: $-x = 0 \implies x = 0$.

Si
$$x = 0$$
, entonces $y = 2$.

Sustituyendo en la primera original: $0+2+z=3 \implies z=1$.

La solución es
$$(0,2,1)$$
.

Ejercicio 3. Geometría

Considere el plano que tiene como vectores directores $\vec{u} = (-1, 3, 2)$ y $\vec{v} = (2, 1, 0)$ y que pasa por el punto A = (1, 0, 3).

- a) Calcule la ecuación de la recta que es perpendicular al plano y pasa por el punto A.
- b) Calcule la distancia del punto P = (1, 5, 0) al plano.

Solución:

a) Calcule la ecuación de la recta que es perpendicular al plano y pasa por el punto A.

El vector director de la recta, \vec{v}_r , es el vector normal del plano, $\vec{n}_{\pi} = \vec{u} \times \vec{v}$.

$$ec{n}_{\pi} = egin{vmatrix} ec{i} & ec{j} & ec{k} \ -1 & 3 & 2 \ 2 & 1 & 0 \end{bmatrix} = (-2, 4, -7).$$

La recta pasa por A(1,0,3) y tiene $\vec{v}_r = (-2, 4, -7)$.

La recta es
$$(x, y, z) = (1, 0, 3) + \lambda(-2, 4, -7)$$
.

b) Calcule la distancia del punto P = (1, 5, 0) al plano.

Primero, hallamos la ecuación del plano: $-2(x-1)+4(y-0)-7(z-3)=0 \implies -2x+4y-7z+23=0$.

Aplicamos la fórmula de la distancia:

$$d(P,\pi) = \frac{|-2(1)+4(5)-7(0)+23|}{\sqrt{(-2)^2+4^2+(-7)^2}} = \frac{|-2+20+23|}{\sqrt{4+16+49}} = \frac{41}{\sqrt{69}} = \frac{41\sqrt{69}}{69}.$$

La distancia es
$$\frac{41\sqrt{69}}{69}$$
 unidades.

Ejercicio 4. Álgebra

Sea la matriz $A=egin{pmatrix} 1 & 0 & \alpha \\ \alpha & 0 & -1 \\ 2 & -1 & 1 \end{pmatrix}, \ \text{en que } \ \alpha \ \ \text{es un parametro real.}$

- a) ¿Hay algún valor de $\alpha \in \mathbb{R}$ tal que A no tenga inversa para este valor?
- b) Calcule la matriz inversa de A^2 para $\alpha = 0$.

Solución:

a) ¿Hay algún valor de $\alpha \in \mathbb{R}$ tal que A no tenga inversa para este valor?

Una matriz A no tiene inversa si y solo si su determinante es cero.

Calculamos el determinante de A:

$$|A| = \begin{vmatrix} 1 & 0 & \alpha \\ \alpha & 0 & -1 \\ 2 & -1 & 1 \end{vmatrix}$$

Desarrollamos por la segunda columna:

$$|A| = -(-1)\begin{vmatrix} 1 & \alpha \\ \alpha & -1 \end{vmatrix} = 1(-1 - \alpha^2) = -1 - \alpha^2.$$

Igualamos el determinante a cero para ver si existe algún valor de α que lo anule:

$$-1 - \alpha^2 = 0 \implies \alpha^2 = -1.$$

Esta ecuación no tiene solución en el conjunto de los números reales.

Por lo tanto, el determinante de A nunca es cero.

No existe ningún valor de α para el que A no tenga inversa, ya que $|A| \neq 0$ para todo $\alpha \in \mathbb{R}$.

b) Calcule la matriz inversa de A^2 para $\alpha = 0$.

Para
$$\alpha=0$$
, la matriz es $A=\begin{pmatrix}1&0&0\\0&0&-1\\2&-1&1\end{pmatrix}$.

Calculamos A^2 :

$$A^{2} = A \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 2 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & -1 \\ 4 & -1 & 2 \end{pmatrix}.$$

Para encontrar $(A^2)^{-1}$, podemos usar la propiedad $(M^n)^{-1} = (M^{-1})^n$. Primero calculamos A^{-1} y luego la elevamos al cuadrado.

Para $\alpha = 0, |A| = -1.$

$$A^{-1} = \frac{1}{|A|} \mathrm{Adj}(A)^t = \frac{1}{-1} \begin{pmatrix} -1 & 0 & 0 \\ -2 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}^t = -1 \begin{pmatrix} -1 & -2 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$

Ahora calculamos $(A^{-1})^2$:

$$(A^2)^{-1} = (A^{-1})^2 = \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

$$(A^2)^{-1} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Ejercicio 5. Geometría

Considere los puntos del espacio tridimensional A=(1,1,0), B=(3,5,0) y C=(1,0,0) y la recta $r: x=y-1=\frac{z}{2}$.

- a) Encuentre el punto de intersección de la recta r con el plano que pasa por los puntos A, B y C.
- b) Encuentre los puntos P de la recta r para los cuales el tetraedro de vértices P, A, B y C tiene un volumen de 2u⁸.

Solución:

a) Encuentre el punto de intersección de la recta r con el plano que pasa por los puntos A, B y C.

Los tres puntos A, B y C tienen la tercera coordenada z=0, por lo que el plano que los contiene es el plano OXY, de ecuación $\pi:z=0$.

La recta r en forma paramétrica es: $r \equiv (x, y, z) = (0, 1, 0) + \lambda(1, 1, 2)$.

Para encontrar la intersección, sustituimos la ecuación de la recta en la del plano:

$$2\lambda = 0 \implies \lambda = 0.$$

Sustituyendo $\lambda = 0$ en la recta, obtenemos el punto (0, 1, 0).

b) Encuentre los puntos P de la recta r para los cuales el tetraedro de vértices P, A, B y C tiene un volumen de 2u⁸.

Un punto genérico de r es $P(\lambda, 1 + \lambda, 2\lambda)$.

Volumen =
$$\frac{1}{6}|[\vec{AP}, \vec{AB}, \vec{AC}]| = 2 \implies |[\vec{AP}, \vec{AB}, \vec{AC}]| = 12.$$

$$\vec{AP} = (\lambda - 1, \lambda, 2\lambda), \ \vec{AB} = (2, 4, 0), \ \vec{AC} = (0, -1, 0).$$

$$[\vec{AP}, \vec{AB}, \vec{AC}] = \begin{vmatrix} \lambda - 1 & \lambda & 2\lambda \\ 2 & 4 & 0 \\ 0 & -1 & 0 \end{vmatrix} = 2\lambda(-2) = -4\lambda.$$

$$|-4\lambda| = 12 \implies 4|\lambda| = 12 \implies |\lambda| = 3 \implies \lambda = \pm 3.$$

Para $\lambda = 3$, el punto es $P_1(3,4,6)$. Para $\lambda = -3$, el punto es $P_2(-3,-2,-6)$.

Los puntos son
$$(3,4,6)$$
 y $(-3,-2,-6)$.

Ejercicio 6. Análisis

Sean las funciones $f(x) = x^2 - 1$ y $g(x) = 3 - x^2$.

- a) Haga un esbozo de las gráficas de las parábolas y = f(x) y y = g(x) en un mismo sistema de ejes cartesianos y encuentre los puntos de corte con el eje de las abscisas, los vértices y los puntos de corte entre las dos gráficas.
- b) Calcule el área de la región del semiplano $y \ge 0$ compresa entre las gráficas de f(x) y g(x).

Solución:

a) Haga un esbozo de las gráficas de las parábolas y = f(x) y y = g(x) en un mismo sistema de ejes cartesianos y encuentre los puntos de corte con el eje de las abscisas, los vértices y los puntos de corte entre las dos gráficas.

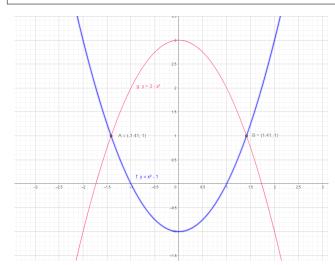
 $\mathbf{f}(\mathbf{x}) = \mathbf{x}^2 - 1$: Parábola convexa (hacia arriba), Vértice en (0,-1), Cortes con OX en $x = \pm 1$. vspace10pt

 $\mathbf{g}(\mathbf{x}) = \mathbf{3} - \mathbf{x}^2$: Parábola cóncava (hacia abajo), Vértice en (0,3), Cortes con OX en $x = \pm \sqrt{3}$. vspace 10pt

Cortes entre f y g: $x^2 - 1 = 3 - x^2 \implies 2x^2 = 4 \implies x^2 = 2 \implies x = \pm \sqrt{2}$. vspace10pt

Puntos de corte: $(\sqrt{2}, 1)$ y $(-\sqrt{2}, 1)$.

Cortes OX de f: $(\pm 1,0)$. Vértice f: (0,-1). Cortes OX de g: $(\pm \sqrt{3},0)$. Vértice g: (0,3). Cortes f-g: $(\pm \sqrt{2},1)$.



b) Calcule el área de la región del semiplano $y \ge 0$ compresa entre las gráficas de f(x) y g(x).

La región está limitada superiormente por g(x) e inferiormente por f(x) y el eje y=0. El área es la que está bajo g(x) entre sus raíces $(-\sqrt{3},\sqrt{3})$, menos los dos trozos de área bajo f(x) que están en el semiplano $y \ge 0$. Por simetría, podemos calcular el área para $x \ge 0$ y multiplicar por 2.

Área en el primer cuadrante: $A_1 = \int_0^{\sqrt{3}} g(x) dx - \int_1^{\sqrt{2}} f(x) dx$. $A_{total} = \int_{-\sqrt{3}}^{\sqrt{3}} (3-x^2) dx - 2 \int_1^{\sqrt{2}} (x^2-1) dx$.

$$\int_{-\sqrt{3}}^{\sqrt{3}} (3 - x^2) dx = \left[3x - \frac{x^3}{3}\right]_{-\sqrt{3}}^{\sqrt{3}} = \left(3\sqrt{3} - \sqrt{3}\right) - \left(-3\sqrt{3} + \sqrt{3}\right) = 4\sqrt{3}.$$

$$2\int_{1}^{\sqrt{2}} (x^2 - 1) dx = 2\left[\frac{x^3}{3} - x\right]_{1}^{\sqrt{2}} = 2\left[\left(\frac{2\sqrt{2}}{3} - \sqrt{2}\right) - \left(\frac{1}{3} - 1\right)\right] = 2\left(-\frac{\sqrt{2}}{3} + \frac{2}{3}\right) = \frac{4 - 2\sqrt{2}}{3}.$$

$$A_{total} = 4\sqrt{3} - \frac{4 - 2\sqrt{2}}{3} = \frac{12\sqrt{3} - 4 + 2\sqrt{2}}{3}.$$

El área es
$$\frac{12\sqrt{3} - 4 + 2\sqrt{2}}{3}$$
 u².

